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1. INTRODUCTION AND NOTATIONS

Let X be a Banach space, F a bounded closed subset of X, ¥ a closed subset
of X. A point x € Vis said to be a relative Chebyshev center of F with respect
1o Vif x is the center of the smalest closed ball with center in ¥ containing F,
1e., if

xe{zeV;supllz — y| = rad,(F)}, where rady(F) = inf sup | w — y .
yeF weV yeF

The number rady(F) is called the relative Chebyshev radius of F with respect

to V. We denote the set of all such Chebyshev centers by cent,(F).

The guestion of the existence, unicity and stability of Chebyshev centers

has been recently studied by several authors (cf., e.g., [8, 13, 14, 21-23]).

In this paper we study the continuity properties of cent, . This is clearly
a set-valued function from 2% into 2% (we assume 2% to be equipped with the
Hausdorff metric d). We show here that cent, is an upper Hausdorff semi-
continuous function if X is an arbitrary Banach space and V is a finite-
dimensional closed convex subset of X, and if X = /; and V' is a w*-closed
convex subset of X. We show further that cent, is Hausdorfl continuous on
the subclass (X)) of 2% of all compact subsets of X if X is a dual locally
uniformly convex (l.u.c.) Banach space and V is a w*-closed convex subset
of X, and if X is a Lindenstrauss space and ¥V is an M-ideal in X.

Let S be a compact Hausdorff space, C(S, X) the space of all continuous
functions on § with valuesin a Banach space X equipped with the norm of the
uniform convergence. A subspace V of C(S, X) is said to be a Stone-
Weierstrass (SW-)subspace of C(S, X) if there is a compact Hausdorff
space 7" and a continuous surjection ¢ from § onto 7 such that
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V={fel(S, X);f = go o for some g € C(T, X)}. Mazur (unpublished,
cf., e.g., [19]) proved that such subspaces are proximinal if X = R (a subspace
G of a normed linear space X is called proximinal if every x € X possesses
a best approximation in G). Pelczynski [17] asked whether for a given Banach
space X every SW-subspace of C(S, X) is proximinal. Olech [16] and Blatter
[3] showed that this conjecture is true if X is a uniformly convex Banach
space and a Lindenstrauss space, respectively (a Lindenstrauss space is a
space whose dual is L,(u) for some measure ). Lau [10] showed that for X
uniformly convex this result remains true even if the assumption of the com-
pactness of S and T'is dropped. Here we give a contribution to this problem.
By the application of our previous results we show that every SW-subspace
with ¢ open is proximinal if X is a dual L.u.c. Banach space. Further, we give
an example of a Banach space X for which the answer to Pelczynski’s question
is negative.

We employ the following notations. R and N will denote the set of all
real numbers and the set of all positive integers, respectively. Let X be a
Banach space, x € X, ¥ > 0. B(x, r) will denote the closed ball in X with center
x and radius r. A set-valued function f from a topological space S into 2%
is called upper Hausdorff semicontinuous (u.H.s.c.) respectively lower
Hausdorff semicontinous (1.H.s.c.) if for every s, €S and every € > 0 there
is a neighborhood U of s, such that for every se U we have Sup,.
dist(x, f(so)) < € respectively’ SUpges(s) dist(x, f(s)) < e. The function f
is Hausdorff continuous (H.c) if f'is both u.H.s.c. and 1.H.s.c. The function f
is u.s.c. respectively Ls.c. if it is upper semicontinuous respectively lower
semicontinuous in the usual sense (cf. [18, 20]). A Banach space X is said
to be locally uniformly convex (Lu.c.) if for every x € X with || x || = 1 and
every sequence { y,} C X with lim| y, || < 1, im Jl(x + »,)/2{] = 1 implies
lim|lx — y,|l = 0. X is said to be uniformly convex in every direction
(uce.d) (cf., e.g., [6, 8]) if for every ¢ > 0 and every z € X thereisa 8 > 0
such that || x| =2l =1 x —x, = Az for some AeR and
Iy -+ x0)/21l = 1 — & implies | A | < e. All Banach spaces in this paper
are real,

2. SEMICONTINUITY OF centy

In this section we study the upper and lower Hausdorfl semicontinuity
of cent . To avoid ad hoc proofs and to simplify the exposition the following
definition appears useful.

DerNITION.  Let X be a Banach space, U a class of closed bounded subsets
of X, V a closed subset of X. The pair (¥, ) is said to have the property
P, if for every Fe U and every € > 0 there is a 8 > 0 such that for every
x € Nyer B(y, radp(F) + 8) N ¥V we have dist(x, Nyer B(y, rad, (F)) N V) < e.
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The pair (¥, %) is said to have the property P, if it has the property P,
such that § > 0 can be chosen independently on F € 2. We use the convention
dist(x, @) = + o0 here.

Now, we give some examples.

ProposITION 1, Let X be an arbitrary Banach space, V a finite-dimensional
closed convex subset of X, W the class of all bounded, closed, non-empty
subsets of X. Then the pair (V, W) has the property P; .

The proof is easy and is left to the reader. To prove Proposition 2 we need
the following lemma. Its proof may be found in {12].

LemMa. Lef {x,} Cl be a sequence weakly* converging to 0. Let yel; .
Then for every € > 0 there is an ng € N such that n = nyimplies ||| x, — y| —
ol — iyl <e

ProposITION 2. Let X = [, . Let V be a w*-closed convex subset of X,
U the class of all bounded closed non-empiy subsets of X. Then the pair (V, %)
has the property Py .

Proof. Assume the contrary. Then there is an ¢, > 0 and a set F e ¥
such that for every n e N there exists an element z, € ¥V such that z, € (yer
B(y, rady(F) -+ 1/n) and dist(z, , (Yyer B(y, rad{F)) N V) = ¢,. Without
loss of generality we may assume w* — lim z,, = 0. It is impossible that
Im{z, [l =0, so 5 =limsup|z,| > 0 For every yeF we obviously
have lim sup || y — z, || < rad,(F). Let € > 0 be given. Then for every n e N
sufficiently big we have ||z, — y|| < radp(F) + €/3 and, by the previcus
lemma, |||z, — vl — | zoll — | ¥ || << €/3. On the other hand there is a
subsequence {z, } with || z, || = 1o — (¢/3) for each & e N. Thus for every
y € F and suitable k € N we have

IV <z, — Yl —l 2ol + €/3
< radp(F) 4 2€/3 — || z,,, || < rady(F) — 7 + €.

Since € > 0 has been arbitrary we have (| y | < radp(F) — n,for every ye £,
This, however, implies B(0, 5,) C B(p, rad(F)) for every yeF. Thus
B0, n0) N V' C (Vyer B(y, rady(F)) © V. But lim dist(z, , B(0, ) N V) = 0.
A contradiction.

A closed subspace ¥ of a Banach space X is called an M-ideal if there exists
a projection P on the dual X* of X onto ¥+, the annihilator of V, such that
for every ue X* we have jju|| = || Pull 4+ || v — Pull. The concept of an
M-ideal has been introduced and studied in [1] {cf. also [2, 7, 9]). It has been
shown in [13] that centy(F) % @ for every compact subset F of a
Lindenstrauss space X and every M-ideal V.
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ProposITION 3. Let X be a Lindenstrauss space, V an M-ideal in X and
A the class of all compact non-empty subsets of X. Then the pair (V, %)
has the property P, .

Proof. Put 6 = e Let FeN, x¢& (\yer B(y, rady(F) -+ 8) 0 V. Then
obviously B(x, 8) N B(y,rad,(F)) % @ for every yeF. Since also
Nyer B(y, rad (F)) N V = centy(F) % @, the balls B(y, rad,(F)), yeF,
B(x, 8) intersect pairwise. By a well-known theorem of Lindenstrauss
[11] B(x, 8) N Nyer B( y, rad(F)) = ©. Further, each of the above balls
intersects V. The rest of the proof follows from the next lemma [13].

LeMMA. Let X, V and W be as in Proposition 3. Let Ke N, r > 0. Assume
that B(x,r) "V 5 & for every xe K and that (Npex B(x, ¥} 5% @. Then
Neex Blx, DNV # &,

Garkavi [8] showed that a Banach space X is u.c.e.d. if and only if for
every bounded set F C X centz(F) consists of at most one element. The same
argument with obvious modifications shows that if X is strictly convex then
cent,(F) consists of at most one element for every compact set K C X and
every convex closed set ¥ C X.

PrROPOSITION 4. Let X be a Lu.c. space. Let V be a closed convex subset
of X, U the class of all compact non-empty subsets of X. Let cent,(F) %= &
for every Fc . Then the pair (V, W) has the property P, .

Proof. Assume the contrary. Then there is a compact set FC X and an
€, > 0 such that for every ne N there exists an x, € V such that x, € N,er
B(y,rady(F) + 1/n) and || x, — x| > &, where xy = centp(F) = (Vyer
B(y, rad,(F)) n V. Put w, =(x, + x,)/2, n € N. Since w,, cannot be in cent,(F)
for every ne N there exists a y, € F with {| w, — y, | > rad,(F). Without
loss of generality we may assume that lim y, = y, for some y,eF. For
every n e N denote €, = || ¥, — ¥, /. Then we have ’

1vo — Wall Z17n — Wall =11 ¥a — 2o ll > radp(F) — ¢,
and

1Yo = Xall <M Yo — Vull + 1 ¥n — Xall < 1adp(F) + 1/ + ¢,

It follows that for suitable subsequences we have || 4, {| < rad,(F), lim || || <
rady(F)and lim [|(u -+ v)/2 (| = rady(F), where sy = po — Xy, Un = Yo — Xy,
which together with [[u#y — v, =%, — X || = €, n€N, contradicts
the assumption that X is locally uniformly convex.

Remark. If X is a uniformly convex Banach space then in the previous
proposition A can be taken to be the class of all closed bounded non-empty
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subsets of X. The proof is similar to that of Proposition 4 and is left to the
reader.

The assumptions of Proposition 4 are fulfilled, e.g., for all dual Lu.c.
Banach spaces and all w*-closed convex subsets ¥ of X. This is an immediate
consequence of Alaoglu’s theorem.

Now, we establish the connection between the properties Py and P, and
the Hausdosff semicontinuity of cent .

THEOREM 5. Let X be a Banach space, V a closed subset of X and ¥ a
class of bounded closed non-empty subsets of X. If the pair (V, W) has the
property Py then the function centy is w.H.s.c. on .

Proof. Let Fe ¥ and ¢ > 0 be given. Take the corresponding § > .
It is easy to show that cent, @) C Nyer B(y, rad, (F) + 8 NV for every
G e W with d(F, G) < 3/2. Indeed, x € G implies dist(x, F) << §/2. Hence
radp(G) < rad (F) -+ 8/2. Similarly rad(F) < rad,(G) -+ /2. Let yeF.
Then there is an x, € G with || y — x, || < 8/2. For every such pair we have
B(x, , rad,(G)) C B(y, rad(G) + 8/2) C B(y, rad,(F) + 8). This imphes
CentV(G) = nmeG B(x, radV(G)) Nnvc nyeF B(xy ’ radV(G)) nvVc ﬂye}?
B(y,rad(F) -+ 8) N V. Since the pair (V, ) has the property P, we have
dist(x, cent,{(F)) < e for every x & cent,(G).

THEOREM 6. If the pair (V, W) has the property P, then centy is H.c. on .

Proof. Since P, implies P, we have only to show that cent, is LH.s.c,
on . Let Fe W and ¢ > 0 be given. Take the corresponding 8 > 0. It is
clear from the proof of Theorem 5 that cent (F) C (Ve B(y, rad(G) +
8) N ¥V for every G e W with d(F, G) < 8/2. Hence dist(x, cent,(G)) < e for
every such G and every x e cent,(F).

Remark. The property LH.s.c. is obviously stronger than the usual
lower semicontinuity. Thus, by Michael’s selection theorem [15], cent,
admits a continuous selection on U if the pair (V, ) has the property P, .

CoROLLARY 7. Ler X be a Banach space, V' a closed subset of X, ¥ a
class of bounded closed non-empty subsets of X. Then centy is u.H.s.c. on %
if one of the following conditions is fulfilled.

(1) V is convex and finite-dimensional,
(i) X =1, and V is convex and w*-closed,
(iii) X is uniformly convex and V is convex,

(ivy X is a dual Lu.c. Banach space, V is w*-closed convex and the sets
W are all compact,
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(v) X is a Lindenstrauss space, V is an M-ideal in X and the sets in W
are all compact. In this case cent, is even H.c.

Cheney and Wulbert [4] have given an example of a Chebyshev subspace
V of [, for which the metric projection Py is discontinuous. The subspace ¥
of their example is obviously not w*-closed. Since the metric projection
coincides with cent, on the class of all singletons { f} C/; the next result
follows from Corollary 7(ii).

COROLLARY 8. Let V be a w*-closed Chebyshev subspace of I, . Then
the metric projection Py is continuous.

Remark. Since each of the assumptions (iii) and (iv) of Corollary 7
implies that cent,(F) consists of exactly one element for every bounded set
F C X, it follows from Corollary 7 that in both these cases cent;, is continuous
on 2.

3. PROXIMINALITY OF STONE-WEIERSTRASS SUBSPACES

* Let § and T be compact Hausdorff spaces, ¢: S — T a continuous sur-
jection, V ={feC(S,X);f=gep for some ge C(T, X)}. For every
Fe (S, X) denote DPLt) = {f(s); s€ o7 t)}, t T. The following theorem
gives a sufficient condition for the existence of a best approximation in V.,

THEOREM 9. Ler V be a SW-subspace of C(S, X) such thai the corresponding
Junction ¢ is open. Let fe C(S, X). If centy admits a continuous selection
on the class A (X) of all non-empty compact subsets of X then there exists
a best approximation of fin V.

Proof. 1t is easy to see that dist(f; V) > supsr radx(D(r)). Olech [16]
showed that @y is a u.s.c. function which implies that @; is u.H.s.c. It is easy
to show that @, is l.s.c. Indeed, let f,e T, x = f(s) € PH(t,) and € > 0 be
given. Then there is an open neighborhood U of s with f(s") C B(x, ) for
every s" € U. It follows that Dy(¢t) N B(x, €) == @ for every point e U’ =
@(U). Since DA¢) is compact for every t € T @, is LH.s.c.

Now, let A: A (X) — X be a continuous selection of centy . Define
g = h o ;o . The function g is obviously continuous and we have

lf— gl = sup| f(s) — g(s)l = sup sup | () — Ao D)l

ses +=T sep™

= sup rad x(D(?)).
el

Thus g is a best approximation of fin V.
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COROLLARY 10. Let X be a dual lu.c. Banach space. Then every SW-sub-
space of C(S, X) for which the corresponding ¢ is open is proximinal.

We do not know whether in Theorem 9 and Corollary 10 the assumption
that ¢ is open may be dropped. Nor do we know whether the condition that
cent, has a continuous selection is necessary for the proximinality of SW-
subspaces. The following theorem gives a necessary condition for the proxi-
minality of such subspaces.

THEOREM 11. Let F be a compact set in a Banach space X for which
centy(F) = . Then there is a compact Hausdorff space S and an SW-sub-
space of C(S, X) which is not proximinal.

Proof. PutS = F. Let T == {¢} be an arbitrary one point set. Put ofs) = ¢
for every seS. Let fe C(S, X) be the identity map. We obviously have
dist( f, V) = radg(F). Let g=heopeV for any heC(7,X). Since
centy = & we have SuPees | F(5) — g(5)| = suPues (| F(5) — A > rad,(F).
Tt follows that g cannot be a best approximation of .

Garkavi [8] has given an example of a Banach space X and a three-point
subset F of X with centy(F) = @. This, together with Theorem 11 provides
an example of a space C(S, X) with an SW-subspace which is not proximinal.
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